If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying [x + -1(4 + 2i)][-1(4 + -2i)] = 0 [x + (4 * -1 + 2i * -1)][-1(4 + -2i)] = 0 [x + (-4 + -2i)][-1(4 + -2i)] = 0 Reorder the terms: [-4 + -2i + x][-1(4 + -2i)] = 0 [-4 + -2i + x][(4 * -1 + -2i * -1)] = 0 [-4 + -2i + x][(-4 + 2i)] = 0 Multiply [-4 + -2i + x] * [-4 + 2i] [-4[-4 + 2i] + -2i * [-4 + 2i] + x[-4 + 2i]] = 0 [[-4 * -4 + 2i * -4] + -2i * [-4 + 2i] + x[-4 + 2i]] = 0 [[16 + -8i] + -2i * [-4 + 2i] + x[-4 + 2i]] = 0 [16 + -8i + [-4 * -2i + 2i * -2i] + x[-4 + 2i]] = 0 [16 + -8i + [8i + -4i2] + x[-4 + 2i]] = 0 [16 + -8i + 8i + -4i2 + [-4 * x + 2i * x]] = 0 Reorder the terms: [16 + -8i + 8i + -4i2 + [2ix + -4x]] = 0 [16 + -8i + 8i + -4i2 + [2ix + -4x]] = 0 Reorder the terms: [16 + -8i + 8i + 2ix + -4i2 + -4x] = 0 Combine like terms: -8i + 8i = 0 [16 + 0 + 2ix + -4i2 + -4x] = 0 [16 + 2ix + -4i2 + -4x] = 0 Solving 16 + 2ix + -4i2 + -4x = 0 Solving for variable 'i'. Factor out the Greatest Common Factor (GCF), '2'. 2(8 + ix + -2i2 + -2x) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(8 + ix + -2i2 + -2x)' equal to zero and attempt to solve: Simplifying 8 + ix + -2i2 + -2x = 0 Solving 8 + ix + -2i2 + -2x = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 27=(1/9)^(2x_ | | 2lgx-lg(4x-4)=0 | | v(100)=1.74+60 | | v(100)=0.186(100)+45 | | x+2.8=6.1 | | -6(f-5)=36 | | 5x+4(x-5)=6x+2x-15 | | sqrt(3x^2-15x)=2x-10 | | Y=-(-3)-8 | | S/18=50 | | 9x^2+4xy+5y^2-40=0 | | 2(1-2w)=4w+8 | | 3(2x+1)-(x-5)= | | 5ln(x)=5.49 | | 4/p-3/q | | 4/2j^13 | | V=1/3b^2h | | x/170=.9 | | 16(90-x)=7(120-x) | | x/x-2=5/7 | | 7j+7=322 | | 4/2j | | -100x^3+250x^2+500x-80=0 | | 7x+6=-7 | | 3a(8a-6b)= | | y=4x^2-4x-10 | | 2/10h=99 | | 2ab= | | 0.5n^2-0.5n-15=0 | | 3500/25=10x | | .0575r=9444.85 | | -7a-9=5(3-a)-5a |